Expertise documents

Managing oxidative risk with biological tools Post-fermentation with Pure-Lees™ Longevity

We have seen in Part I of Managing oxidative risk how to fight oxidation in must with specific inactivated yeast, such as Glutastar™. Even though the impact of Glutastar™ is evident all the way to the bottle, there are sensitive stages post fermentation, where oxygen contamination needs to be controlled via O2 scavenging in order to avoid wine oxidations. In the post-fermentation stages, the oxygen ingress can vary depending on the type of operation done with the wine. There are numerous time points when wine is potentially exposed to oxygen along the way to the bottling step, and beyond. Pure-Lees™ Longevity is a specific yeast derivatives with high potential to scavenge oxygen is a great biological tools to reduce the use of SO2 during critical points post-fermentation. WUP - Oxidation - Pure-Lees ENG

Managing oxidative risk with biological tools – Glutastar™ in Pre-fermentation

Throughout winemaking, several steps are known as strategic key points where oxidation mechanisms can occur: transport of grapes, at pressing, stabulation, racking, at the beginning of AF, during cold stabilization, storage and transport. This Winemaking Update will focus on biological tools available to winemakers to control oxidation prior to the onset of alcoholic fermentation, more specifically on how the specific yeast derivative, Glutastar™ can support the process of managing oxidation in white and rosé wines in a strategy to reduce chemical intrant such as SO2. WUP - Oxidation - Glutastar ENG  

The oxygen consumption rate of an inactive dry yeast (IDY) selected to protect wine from oxidation

The oxygen consumption rate of a specific inactivated yeast (Pure-Lees™ Longevity, Lallemand) specially selected to protect wine from oxidation thanks to its high capacity for oxygen consumption was calculated using a non-destructive luminescence-based technique in a model solution, to which different concentrations of inactive dry yeast, sulphur dioxide or ascorbic acid were added. Results indicate that the specific inactivated yeast consumes oxygen at a similar rate to sulphur dioxide at the usual concentrations of use for both antioxidants. PLL Pons Final  

Unique specific autolysate to help with Pinot noir colour and texture management

Recent research has given us a much better understanding of how yeast and phenolic compounds interact in red wine, enabling us to better characterize the biochemical and biophysical properties of yeast with unique wine-relevant characteristics. We have described the development of a specific yeast autolysate with unique wine sensory impacting properties. A yeast autolysate (MEX-WY1) was prepared from a wine yeast with distinctive characteristics. Studies using model grape must revealed the involvement of mannoproteins in the soluble fraction of the autolysate in the formation of stable complexes that contribute to colour stabilization and reduction in wine astringency. Winery trials demonstrated that adding the specific autolysate MEX-WY1 at the beginning of fermentation had a positive effect on wine sensory characteristics such as colour, mouthfeel, and fruitiness in red wine, especially Pinot Noir wines. Thus, the new specific autolysate constitutes a unique tool to improve colour and texture management in Pinot Noir. MEX-WY1 has been released as commercial product, OPTI-MUM RED™. OMR Color and Texture

An original and new specific inactivated yeast to improve the oxidative stability of white and rosé wines

In this paper we present research work carried out in collaboration with the University of Burgundy, which has highlighted the impact of a new specific inactivated yeast developed for the protection of musts and wines against oxidation. This results from the application of an optimized production process to a unique strain of Saccharomyces cerevisiae yeast to maximize the biosynthesis and accumulation of intracellular glutathione and other compounds of interest. Non-targeted metabolomic characterization has demonstrated the unique composition of the new inactivated yeast and its impact on wine compared with other inactivated yeasts (standard and high glutathione content inactivated yeast). In addition to its high content in reduced glutathione, the presence of other reducing peptides further increases the positive impact of this specific inactivated yeast on the oxidative stability of wine. Numerous application trials have been carried out, at pilot scale in particular, on white and rosé vinifications during the 2017 and 2018 vintages, to evaluate the impact of this inactivated yeast on wine quality when added before fermentation (after pressing, during clarification or in pre-fermentation cold storage). The results show that early treatment with the specific inactivated yeast allows for better preservation of aromatic compounds and color as well as increased radical-scavenging activity in wines up to bottling. Glutastar final eng