

Fermenting positive effects on colour, mouthfeel and fruitiness

Development of a new, innovative, specific yeast autolysate to improve the quality of red wine

Julie Mekoue-Nguela, Anthony Silvano, Jose-Maria Heras, Marion Schiavone, Eveline Bartowsky and Nathalie Sieczkowski

The original article was published in Australia and New Zealand Winemaker & Grapegrower, January 2018, Issue 648

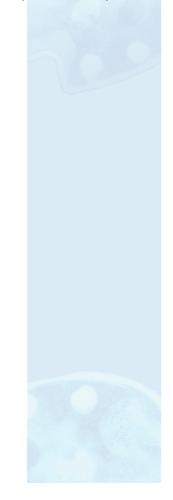
Introduction

Consumer demand for fruity red wines with intense colour and good mouthfeel continues to grow. Aging on lees is a widespread traditional winemaking technique aimed in part at reducing astringency and bitterness while increasing body and aromatic length and complexity. Aging on lees can also help stabilise the colour of red wines. During this step, winemakers reap the many well known benefits—including the release of mannoproteins— provided by adding dead or dying autolyzed yeast (Rodriguez et al., 2005). To avoid the inconvenience of traditional aging on lees, a practice has developed over the past 15 years where specific inactivated yeasts are added to promote the release of polysaccharides (Guadalupe et al., 2007, and Rodriguez-Bencomo et al., 2010). The concept that certain polysaccharides can bind with tannins and thereby reduce the astringency of wines has been around for a number of years.

A recent study that focused on the interactions between mannoproteins and grape or wine polyphenols was conducted at the INRA Montpellier (research unit Science Pour l'Oenologie) (Mekoue et al., 2016). Interactions in solution between grape skin tannins with an average degree of polymerisation of 27 and yeast parietal mannoproteins led to the formation of finite-size submicronic aggregates that were stable over time and remained in suspension. These findings support the hypothesis that mannoproteins released by specific inactivated yeasts can help improve the taste of red wine by binding with tannins. It is likely that using this type of product (high in mannoproteins) at the beginning of the winemaking process will limit aggregation of tannins and anthocyanins early on, thus improving the colour and mouthfeel of red wine. Recent scientific advances have provided more precise tools for characterising wine yeasts and their products, leading to the development of a new yeast autolysate (MEX-WY1) with unique mannoprotein properties based on an innovative combination of a special strain of Saccharomyces cerevisiae (WY1) and a specific inactivation process (MEX).

Physico-chemical characterisation of the specific yeast autolysate (MEX-WY1)

Specific wine yeast with special parietal mannoprotein properties evidenced by atomic force microscopy


Recent research conducted in partnership with INSA Toulouse, atomic force microscopy (AFM) was used to characterise properties of the MEX-WY1 cell wall in comparison to another wine yeast strain of *Saccharomyces cerevisiae* (WY2) that displayed strong mannoprotein-producing capacity (Schiavone et al., 2014). WY1 was particularly adhesive, and due to its high mannoprotein content and the length of its mannoprotein chains stretched over the cell wall, it interacted strongly with the lectin Concanavalin A, used for its specific ability to link with mannose residues.

An innovative inactivation process combined with a unique wine yeast leading to an original autolysate with specific properties

Various autolysis conditions and thermal or physicochemical inactivation procedures were applied to the WY1 yeast to release its high content and long chain mannoproteins. Following several screening and optimisations in the lab, a specific physicochemical treatment was selected (MEX process) for its ability to disrupt yeast and to release high molecular weight parietal mannoproteins. Figure 1 shows transmission

Figure 1: Microscopic (TEM) images of yeast derivatives produced either with a classical thermal process (A, SWYT-WY1) or a specific inactivation process (B, MEX-WY1).

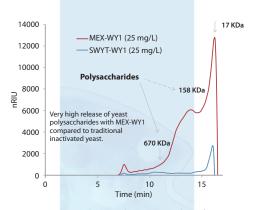


Figure 2: Size exclusion chromatography of SWYT-WY1 and MEX-WY1 soluble fractions

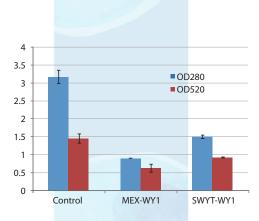


Figure 3: Evaluation of BSA-precipitable tannins (OD 280 nm) and pigments (OD 520 nm) in a model red wine fermented with or without the addition of SWYT-WY1 or MEX-WY1 yeast products.

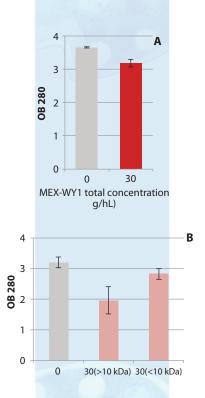


Figure 4: Evaluation of BSA-precipitable tannins (OD 280 nm) after polyphenol interactions with whole MEX-WY1 soluble fraction (A), low molecular weight (< 10 kDa) and high molecular weight (> 10 kDa) soluble fractions (B). MEX-WY1 soluble was added for interaction experiments at an equivalent concentration of total MEX-WY1 of 30 g/hL.

electron microscopy (TEM) images from autolysates obtained through a classic thermal process (Fig. 1.A = SWYT-WY1) in comparison to the MEX treatment (Fig. 1.B = MEX-WY1). The autolysates obtained through thermal and physicochemical treatments had very different appearances. Although thermally inactivated WY1 yeasts maintained a certain cellular integrity and were more than 60% insoluble, physicochemical inactivated yeasts using the MEX process released more components that were 80% soluble. Size exclusion chromatography (SEC) confirmed that the MEX soluble fraction contained a high level of high molecular weight polysaccharides compared to the classical thermal process (Figure 2).

Interactions with phenolic compounds at the beginning of fermentation

Evidence of the interactions of the new autolysate with polyphenols:

In a lab-scale study, the inactivated SWYT-WY1 yeast and the MEX-WY1 autolysate were added at the beginning of fermentation and compared for their ability to interact with red polyphenols. Fermentation was conducted in a synthetic must medium in the presence of a pool of polyphenols extracted from red grape must after thermovinification. Bovine serum albumin (BSA) precipitation tests were conducted on the resulting wines to evaluate interactions with polyphenols (Boulet et al 2016). Absorbency differences at 280 and 520 nm (OD 280 and OD 520) between the untreated and BSA-treated wines indicate the amount of tannins and pigments the protein can precipitate. The capacity of polyphenols to precipitate protein directly affects the astringency of red wine. Figure 3 shows less precipitation of these compounds in treatments using SWYT-WY1 inactivated yeast compared to the control. This effect is more marked in the case of the specific autolysate MEX-WY1.

Understanding the action mechanism of MEX-WY1

Further experiments were undertaken at lab-scale in order to determine the mechanism of action of MEX-WY1 autolysate interactions with polyphenols. Interactions experiments were performed in a synthetic must with added Merlot grape skin polyphenols and the soluble fraction of the yeast autolysate (MEX-WY1-S) at a dose rate equivalent to the application of 30 g/ hL of the total MEX-WY1. After 24 h contact (stirred at ambient temperature) samples were centrifuged and the supernatants were analysed. Total Polyphenols (TP) and Total Red Pigments (TRP) were determined using UV-visible spectrophotometry, and BSA precipitable tannins and polymeric pigments were determined according to the procedure described by Boulet et al. (2016). Absorbency differences at 280 (ΔA 280) between the untreated and BSA-treated wines indicate the amount of tannins and pigments the protein (BSA) precipitated.

Interactions between polyphenols and MEX-WY1 soluble components did not lead to visible aggregation and precipitation. Only a small measurable decrease of the TP and TRP indexes was observed (around 5 % of TP and 6 % of TRP) between the control (synthetic must + polyphenols alone) and the samples after interactions.

BSA precipitation determination showed a lower precipitation of tannins with the addition of the whole MEX-WY1 soluble fraction (Fig. 4 A) compared to the control. This would suggest a reduction of astringency with the addition of the specific autolysate. The very low PT and TRP decrease indicated the formation of stable complexes with high molecular weight

tannins and pigments. This stabilisation of polyphenols in solution by MEX-WY1-S could enable colour stabilisation during fermentation and a reduction in astringency, as their complexation with autolysate's soluble components would make tannins unavailable to interact with salivary proteins that are involved in astringency perception. To identify the specific soluble component involved in these interactions, MEX-WY1-S was fractionated into low (< 10 kDa) and high (> 10 kDa) molecular weight fractions and interactions with polyphenols were performed. The MEX-WY1-S autolysate was able to reduce tannin precipitation after BSA addition. This would indicate a lower precipitation with salivary proteins, thus a lower astringency. When fractionated, the high molecular weight components were more effective regarding the reduction of tannin precipitation. (Fig. 4 B).

Thus, these studies have demonstrated the role of macromolecules in MEX-WY1 autolysate in wine quality improvement, specifically colour stability and astringency. These macromolecules are mainly composed of mannoproteins with unique properties, obtained through the combination of a special yeast strain and a specific inactivation process.

Evaluation of the MEX-WY1 specific autolysate during red wine production

The final step in this study was to evaluate the performance of the MEX-WY1 specific autolysate under red winemaking conditions.

To study the effect of adding the specific autolysate MEXWY1 under large-scale production conditions, numerous trials were conducted at pilot scale (1 hL) and production scale (50-200 hL) on various grape varieties in different grape growing areas in both hemispheres. For each trial, the objective was to compare standard red wine production (control) with MEX-WY1 autolysate (addition rate of 30 g/hL at the beginning of alcoholic fermentation) under the same winemaking process. Fermentation kinetics were monitored and the resulting wines were analyzed at different stages (post-alcoholic fermentation, post-malolactic fermentation, and post-stabilisation). Batch homogeneity was checked by measuring classic physicochemical parameters. The colour of the wines was evaluated through spectrophotometry and by measuring tristimulus values (CieLab). The wines were subjected to a post-stabilisation sensory analysis and the saliva precipitation index (SPI) assay.

Fermentation kinetics in the numerous trials were not affected by the addition of MEX-WY1. The effect of MEX-WY1 on colour stability and wine sensory are described below.

Effect on the colour of red wine

In numerous trials, the addition of the specific autolysate MEX-WY1 at the beginning of fermentation was observed to have a positive effect on wine colour. An example is shown in Figure 5, which shows the colour (parameters L, a, b) measured in Pinot Noir wines from trials conducted in New Zealand (Marlborough , 2016). The wine from the fermentation using MEX-WY1 had a darker, redder colour. The ΔE calculated based on the three parameters was 4.7. It is widely recognised that a trained professional is able to detect an average ΔE of 3 in red wine.

Figure 5: Wine colour as determined by CieLab measurements (L, a, b parameters) in Pinot Noir wines (Marlborough, New Zealand, 2016) from MEX-WY1 (MEX-WY1 added at the beginning of fermentation) and Control fermentations.

Figure 6: Saliva Precipitation Index (SPI) measured in Grenache wine (France, Côtes du Rhône, 2016). The only variable was the addition of the specific autolysate at 30g/hL at the beginning of fermentation in the MEX-WY1 treatment compared to the Control without MEX-WY1.

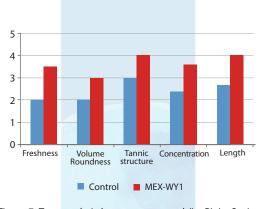


Figure 7: Taste analysis by an expert panel (La Rioja, Spain, March 2017) of a Cabernet Sauvignon (Paso Robles, California 2016) made either with the specific autolysate MEX-WY1 added at a rate of 30g/hL at the beginning of fermentation (MEX-WY1 treatment) or without (Control treatment)

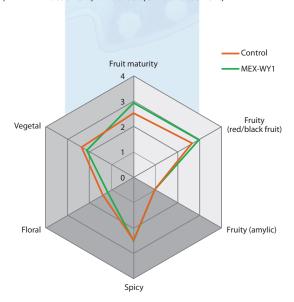


Figure 8: Aroma analysis by a panel of second-year student enologists (Toulouse, France, March 2017) of a Cabernet Sauvignon (Bordeaux, France, 2016) made with the specific autolysate MEX-WY1 added (30g/ hL) at the beginning of fermentation (MEX-WY1 treatment) or without (Control treatment)

Effect on the sensory qualities of red wine (fruitiness, mouthfeel, overall quality)

Trials using the specific autolysate MEX-WY1 demonstrated that several sensory characteristics of red wine can be improved: reduced astringency, better overall mouthfeel, and a riper, fruitier aromas.

• Significant reduction in astringency:

The Saliva Precipitation Index (SPI) measures the reactivity of salivary proteins to polyphenols in wine and it is a good estimate of wine astringency (Rinaldi et al., 2012). Figure 6 shows SPI of Grenache wine made with the Thermo Flash process, known to promote significant phenolic extraction, which can lead to pronounced astringency. We can see that wine fermented with MEX-WY1 has significantly lower SPI compared with the control (38 versus 52). This difference directly correlates with reduced astringency in the MEX-WY1 wine.

Overall improvement in the mouthfeel and structure of red wine:

Apart from the reduced astringency observation, most of the trials demonstrated an overall improvement in the perceived wine structure and mouthfeel. Figure 7 shows the results of a sensory analysis on a 2016 Cabernet Sauvignon (Paso Robles, Central Coast, California) where a MEX-WY1 treatment was compared to a control treatment without MEX-WY1. Both wines underwent a blind sensory analysis by an expert panel trained in wine texture and structure descriptors (La Rioja, Spain, March 2017). The panel found that the addition of MEX-WY1 significantly improved the five descriptors that were assessed: greater freshness, more volume/roundness, enhanced tannin structure and concentration, and better length. Thus, the mechanisms and interactions observed in the model studies above have an impact not only on wine astringency, but also other taste characteristics related to the wine's mouthfeel and structure.

· Enhanced fruit maturity

In a number of the winery trials, some unexpected differences in aroma were noted, including fruit maturity and vegetal and grass characteristics. For example, Cabernet Sauvignon (Bordeaux, France, 2016) wine made from grapes harvested and fermented under the same conditions, either with the addition of the specific autolysate MEX-WY1 at a rate of 30g/hL at the beginning of fermentation or not, showed different aroma sensory profile (Figure 8). Both wines were assessed by a panel of second-year student enologists (DNO Toulouse, March 2017). The MEX-WY1 treatment produced a significant difference (10% confidence level) in "fruit maturity," i.e. more mature fruit notes, compared to the control. The control wine was considered to be slightly more vegetal and the MEX-WY1 wine to have more red/ black fruit notes.

Summary

Recent research has given us a much better understanding of how yeast and phenolic compounds interact in red wine, enabling us to better characterise the biochemical and biophysical properties of yeast with unique wine relevant characteristics. We have described the development of a specific yeast autolysate with unique wine sensory impacting properties. A yeast autolysate (MEX-WY1) was prepared from a wine yeast with distinctive characteristics. Studies using model grape must revealed the involvement of mannoproteins in the soluble fraction of the autolysate in the formation of stable complexes that are contributing to color stabilisation and reduction in wine astringency.

Winery trials demonstrated that addition of the specific autolysate MEX-WY1 at the beginning of fermentation had a positive effect on wine sensory characteristics such as colour, mouthfeel, and fruitiness in red wine.

MEX-WY1 has been released as commercial product, OPTI-MUM RED $^{\text{TM}}$. The research work described in this article is from a collaboration between INRA/Montpellier Supagro, LISBP/INSA Toulouse and Lallemand.

Special acknowledgement to Master student Elissa Abi Habib.

Authors

Julie Mekoue-Nguela^{1,2}, Anthony Silvano¹, Jose-Maria Heras¹, Marion Schiavone^{1,3}, Eveline Bartowsky⁴, Nathalie Sieczkowski¹

- ¹ Lallemand SAS, 19, Rue des briquetiers, 31702 Blagnac, France
- ² UMR 1083 Sciences pour l'OEnologie, INRA, Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
- ³ LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 avenue de Ranqueil, 31077 Toulouse, France
- ⁴ Lallemand Australia, 23-25 Erudina Ave, Edwardstown, SA 5039, Australia

References:

Boulet, J.C., Trarieux, C., Souquet, J.M., Ducasse, M.A., Caille, S., Samson, A., Williams, P., Doco, T., and Cheynier, V. (2016). Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency, Food chemistry 190: 357 363.

Guadalupe, Z., A. Palacios, and B. Ayestaran (2007). Maceration enzymes and manno-proteins: a possible strategy to increase colloidal stability and color extraction in red wines. Journal of Agricultural and Food Chemistry, 55:4854 4862.

Harbertson, J., Kennedy, J., & Adams, D. (2002). Tannins in skins and seeds of cabernet-sauvignon, syrah and pinot noir berries during ripening. American Journal of Enology and Viticulture, 53, 54–59.

Mekoue Nguela J., Poncet-Legrand C., Sieczkowski N., and Vernhet A. (2016). Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and b-glucan. Food Chemistry 210:671 82.

Rinaldi, A., Gambuti, A., and Moio, L., (2012,). Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency, Food Chemistry 135 (4):2498–2504

Rodriguez, M., J. Lezaun, R. Canals, M. C. Llaudy, J. M. Canals, and F. Zamora (2005). Influence of the presence of the lees during oak ageing on colour and phenolic compounds composition of red wine. Food Science and Technology International, 11:289 295.

Rodriguez-Bencomo, J.J., M. Ortega-Heras, and S. Perez-Magarino (2010). Effect of alternative techniques to ageing on lees and use of non-toasted oak chips in alcoholic fermentation on the aromatic composition of red wine. European Food Research and Technology, 230:485 496.

Schiavone M., Sieczkowski N., Castex M., Dague E., and François J. M. (2015). Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts, FEMS Yeast Res. Mar, 15(2).

